GCE MARKING SCHEME

CHEMISTRY AS/Advanced

SUMMER 2012

CH4

Question 1

(a) Any valid ester structure with formula $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$

Examples:

(b) (i) Compound X
(ii)

(iii) Rotate the plane of polarised light in opposite directions
(c)

Reagent(s)	Observation if the test is positive	Compound(s) that would give a positive result
$\mathrm{I}_{2} / \mathrm{NaOH}(\mathrm{aq})$	Yellow solid	X
$\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$	Bubbles of colourless gas effervescence	X, Z
$\mathrm{FeCl}_{3}(\mathrm{aq})$	Dark purple/blue/green - do not accept 'precipitate'	$(1$ mark for each box) \quad [6]

(d) (i) Heat / Alkaline / Potassium manganate(VII) / then acidify
(1 mark for Potassium manganate +1 other point; 2 marks for all)
(ii) I. Addition polymer - One large molecule formed only / Condensation polymer - one large molecule with small molecules (e.g. water) lost.

Addition polymer - one starting material / Condensation - two starting materials OR Addition polymer - one functional group in each molecule/ Condensation polymer two functional groups in each molecule
(1)
II.

(e) (i) $\mathrm{NaBH}_{4} / \mathrm{LiAlH}_{4}$ or name(1)

- ignore conditions unless LiACH_{4}

Reduction (1)
[2]
in water
(ii)

Accept structures with only one -OH group reacted.
(iii)

Question 2

(a) (i) Alanine forms a zwitterion (1)

Forces between alanine molecules are ionic bonding (1)
Ionic bonding much stronger than hydrogen bonding / van der Waals (1)
Max 2 marks [2]
(ii) 1 mark for each correct structure

(iii) 1 mark for correct identification of peptide link
(b) Enzymes / Structural proteins / Hormones or specific example
(c) 1 mark for arrows in first stage; 1 mark for correct intermediate; 1 mark for arrow giving gain of proton in second stage (from HCN or from H^{+}).

(d) Soda lime

Question 3

(a) (i)

Phthalide

(ii)

(b) Distillation / Chromatography
(c) Hydrogenation of 3-butyl phthalide removes a benzene ring (1)

Benzene ring is more stable than alkene/ Reference to delocalisation energy (1) [2]
(d) 62.1\%
(e) (i) Greater variety of different phthalides that can be produced
(ii) Higher atom economy / less waste / carbon monoxide is toxic

- do not accept references to yield
(f) Silver nitrate and ammonia / Tollen's reagent (1); $\mathrm{Q}=$ Silver mirror (1); $\mathrm{R}=\mathrm{No}$ reaction (1)
OR 2,4,-DNP (1); Orange precipitate with Q (1); No reaction with R (1) OR Fehling's solution (1); Orange solid with Q (1); No reaction with R (1)

Question 4

(a) (i) Nucleophilic substitution / Hydrolysis
(ii) Dissolved in alcohol (1) Propene or unambiguous structur
(1)
[2]
(iii) Potassium manganate(VII) / Potassium dichromate(VI) - must be name Oxidation (1)
(iv) (Add Potassium dichromate(VI)) and distil off the propanal from the reaction mixture
(b) (i) Step 1: Potassium cyanide in ethanol / Heat (1)

Step 2: Heat with aqueous hydrochloric acid (or other acid) (1)

(ii) Two points from different bullet points - 1 mark each.

- Atom economy / Amount of waste / Whether waste material was recyclable / Whether waste was toxic.
- Amount of energy required / temperature required / pressure required / conditions used
- Rate of production / time
- Availability of catalyst
- Cost of reactants / Availability of reactants / toxicity of reactants.
- Two step processes usually have lower yields than one step processes / percentage yield
- Purification method / separation
(c) (i) Butanoic acid is $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ so $\mathrm{M}_{\mathrm{r}}=88$

Percentage carbon $=48 / 88 \times 100=54.5 \%$; percentage hydrogen $=8 / 88=9.1 \%$;
Percentage oxygen $=32 / 88=36.4 \%$ (At least two of these for 1)
OR empirical formula for butanoic acid $=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ (1) and
calculate empirical formula from percentage masses $=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ (1)
(ii) Structure 1 mark + 4 marks for explanations.

- Product is ethyl ethanoate. (1)
- Two points from the following required for each mark- MAX 4 marks
- Sweet-smelling = ester
- Peak at 1.0ppm implies $-\mathrm{CH}_{3}$
- Peak area $3=\mathrm{CH}_{3}$
- Peak area $2=\mathrm{CH}_{2}$
- Triplet shows CH_{3} is next to a CH_{2} group.
- Singlet shows CH_{3} no hydrogen atoms bonded to adjacent carbon.
- Peak at 2.1 ppm suggests this is next to $\mathrm{C}=0$.
- Quartet shows CH_{2} is adjacent to a CH_{3} group.
- Peak at 4.0 ppm shows it is $-\mathrm{O}-\mathrm{CH}_{2}-$
- IR Peak at $1752 \mathrm{~cm}^{-1}=\mathrm{C}=\mathrm{O}$
- IR Peak at $2981 \mathrm{~cm}^{-1}=\mathrm{C}-\mathrm{H}$ or $\mathrm{O}-\mathrm{H}$
- Cannot be -OH as we know there is no -OH in NMR spectrum

QWC: selection of a form and style of writing appropriate to purpose and to complexity of subject matter. (1)

QWC: organisation of information clearly and coherently; use of specialist vocabulary where appropriate. (1)

Question 5

(a) (i) (Concentrated) nitric acid / (concentrated) sulfuric acid / Temperature of $40-80^{\circ} \mathrm{C}$ (Any 2 = 1 mark; All 3 = 2 marks)
Electrophilic substitution (1)
(ii) I. Peak area is proportional to amount of substance (1)

Percentage $=(30 / 38) \times 100=79 \%$
(Can obtain both marks from correct percentage)
II. $45=\mathrm{COOH}^{+}, 46=\mathrm{NO}_{2}{ }^{+}, 122=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}{ }^{+}$and $167=\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{4}{ }^{+}$.
(Any 2 = 1 mark; All 4 = 2 marks)
(iii) I. Lower melting point / melts over a range
II. 1 mark for each point.

- Dissolve in the minimum volume
- Of hot water
- Filter hot
- Allow to cool
- Filter
- Dry residue under suction / in oven below $142^{\circ} \mathrm{C}$

QWC: legibility of text, accuracy of spelling, punctuation and grammar, clarity of meaning.[1]
(b) (i) Tin and concentrated hydrochloric acid
(ii) Below $10^{\circ} \mathrm{C}$ (1)

(1)
(iii) $\mathrm{N}=\mathrm{N}$ double bond is chromophore (1)

Compound absorbs blue /green / complementary colours to red / all colours but red (1)
Remaining frequencies are transmitted, giving the red colour seen. (1)
Any 2 out of 3
(c) Nitrogen has a lone pair (1) which can accept a proton (1)

